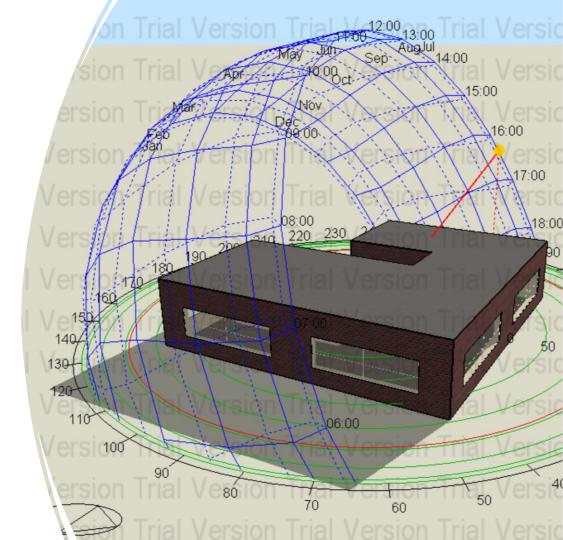
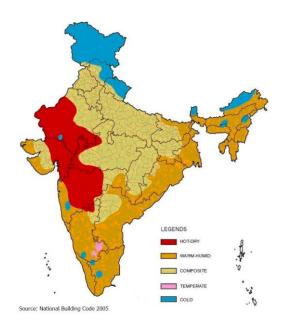


DDL753 Design of sustainable habitats Dr Jay Dhariwal, Assistant Professor, Department of Design, IIT Delhi

Topic 3: Health & Wellness in the Built Environment 29th September, 2023

Source: https://www.savethechildren.net/blog/i-decided-take-role-climate-warrior#

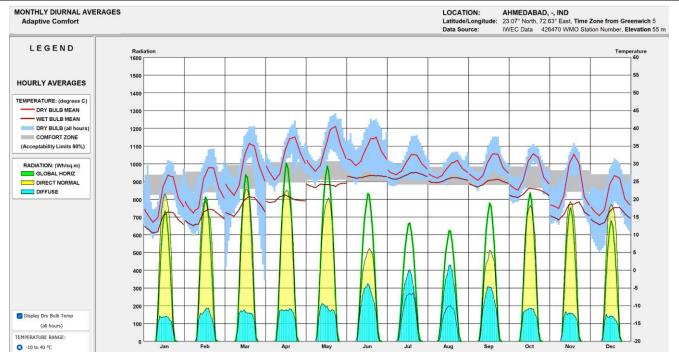

Climate Change affecting lives

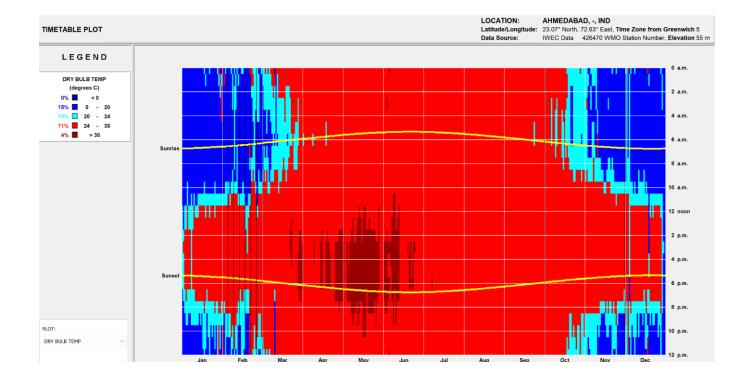

- <u>Race for</u> <u>Tomorrow</u> – Bangladesh, Amazon rainforests, Greenland
- <u>Finland's Climate</u> <u>Warriors | People</u> <u>and Power</u>

<u>Climate responsive</u> <u>design</u>

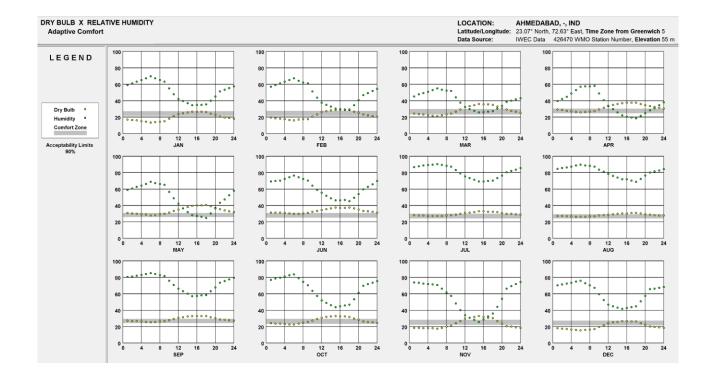
• Climate analysis

•Shoe box modelling

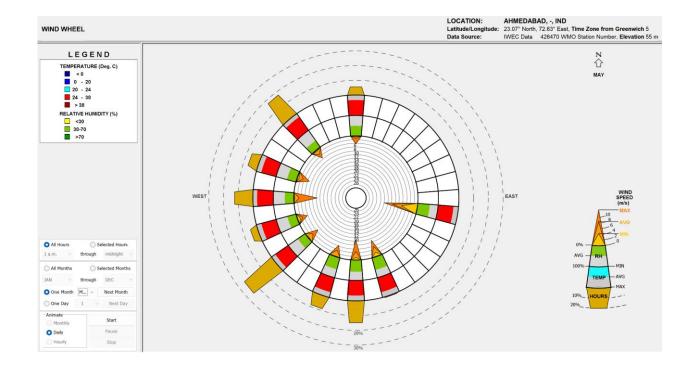


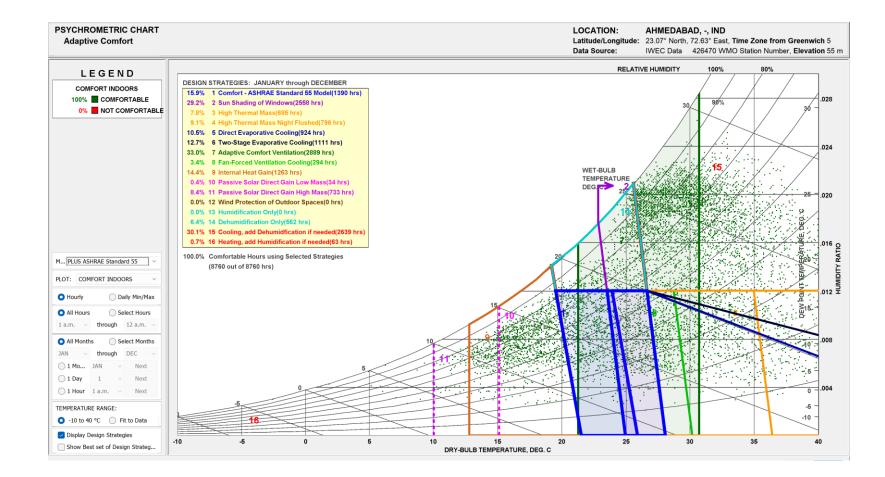

ECBC climate zone finder (example: Delhi)

Climate Consultant based analysis (example: Ahmedabad)



Climate vs. weather, TMY, current weather, predicted weather, urban vs rural, urban microclimate


Air temperature variation



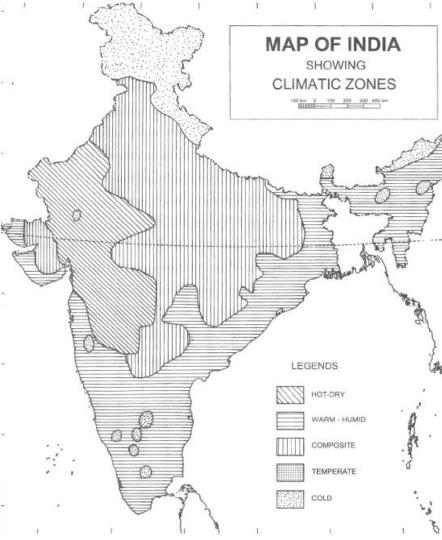
Effect of air temperature and humidity

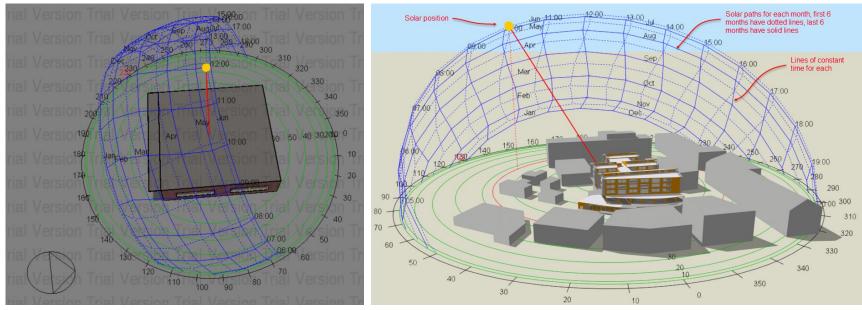
Prevailing wind directions

Climate zones of India

Source: Nayak, J.K., and J.A.Prajapati. 2006. Handbook on **Energy Conscious Buildings IIT** Bombay and Solar Energy Centre, Ministry of Non-conventional Energy Sources, Government of India: R & D project no. 3/4(03)/99-SEC.

5)Composite Region


OBJECTIVES	PHYSICAL MANIFESTATION
1)Resist heat gain in summer and Resist	
heat loss in winter	
Decrease exposed surface area	Orientation and shape of buildin as wind barriers
 Increase thermal resistance 	Roof insulation and wall insulation
 Increase thermal capacity (Time lag) 	Thicker walls
 Increase buffer spaces 	Air locks/ Balconies
 Decrease air exchange rate 	Weather stripping
Increase shading	Walls, glass surfaces protected fins and trees
Increase surface reflectivity	Pale colour, glazed china mosai
2)Promote heat loss in summer/ monsoon	
 Ventilation of appliances 	Provide exhausts
Increase air exchange rate (Ventilation)	Courtyards/ wind towers/ arrang openings


- Increase humidity levels in dry summer
- Decrease humidity in monsoon

of building. Use of trees all insulation protected by overhangs, ina mosaic tiles, etc.

ers/ arrangement of

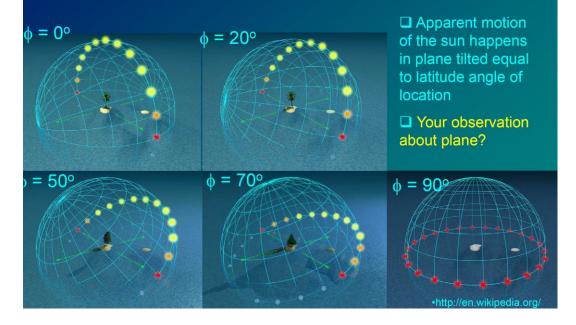
Trees and water ponds for evaporative cooling Dehumidifiers/ desiccant cooling

Location: Ahmedabad

Source: DesignBuilder

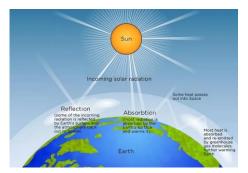
Sunpath

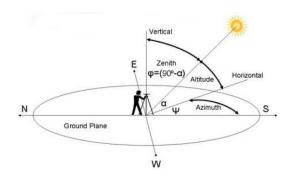
FRUIT TREE SUN CHEAT SHEET

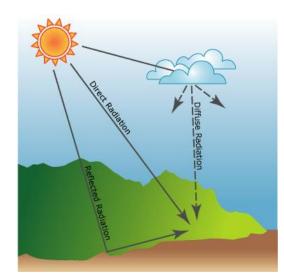


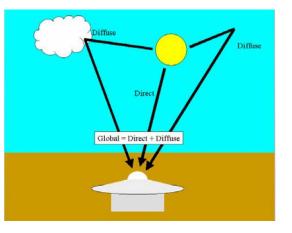
Sunlight needs of our fruits and veggies

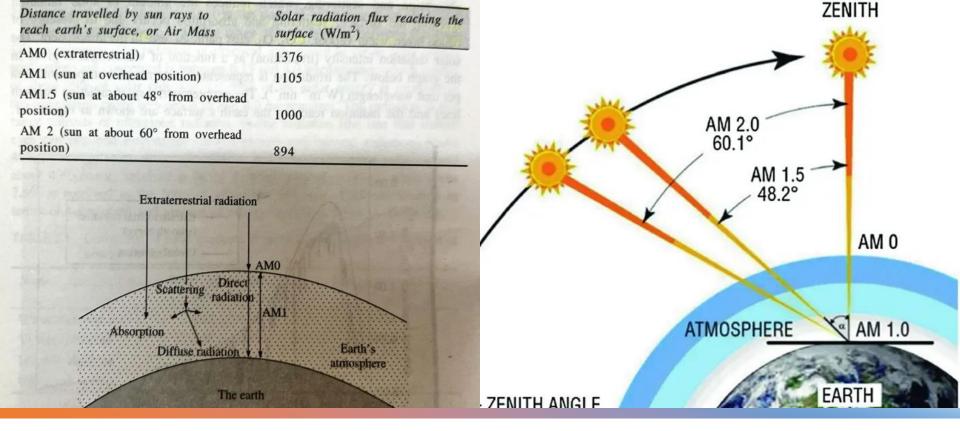
Source: https://www.pinterest.com/pin/376543218839357284/ https://www.naturehills.com/blog/post/how-much-sun-do-fruit-trees-need

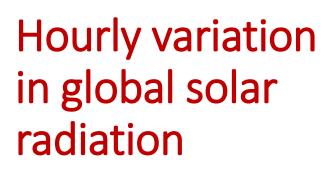


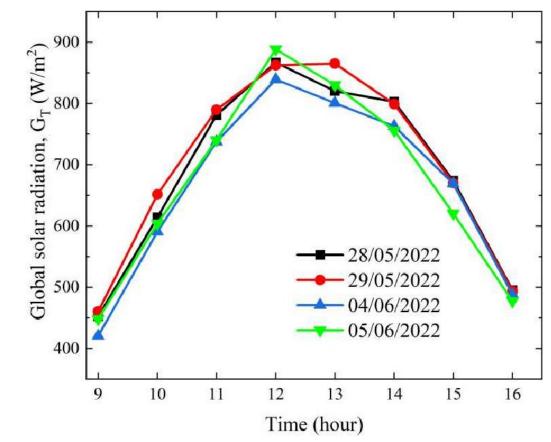

• Apparent motion of sun for equinox days at various latitude



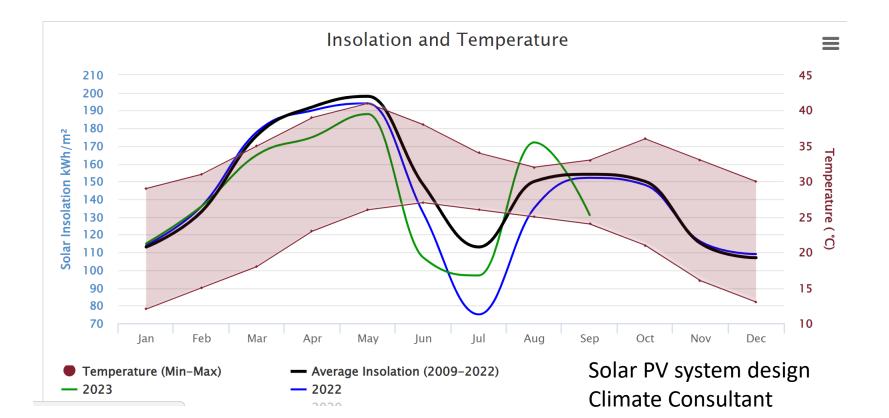

Source: Prof Chetan Singh Solanki's lecture notes from EN301, IIT Bombay


Solar geometry

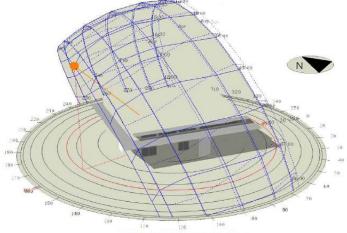




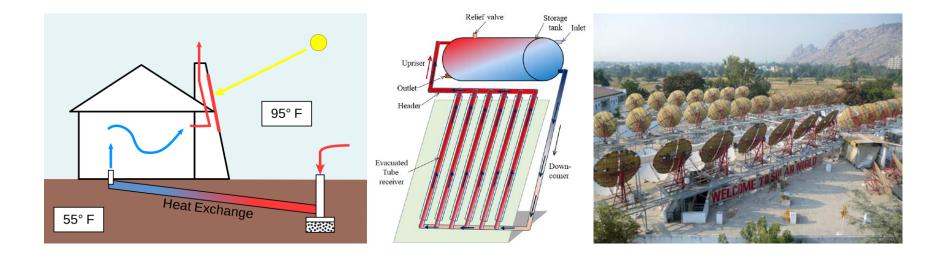
Solar radiation variation with air mass

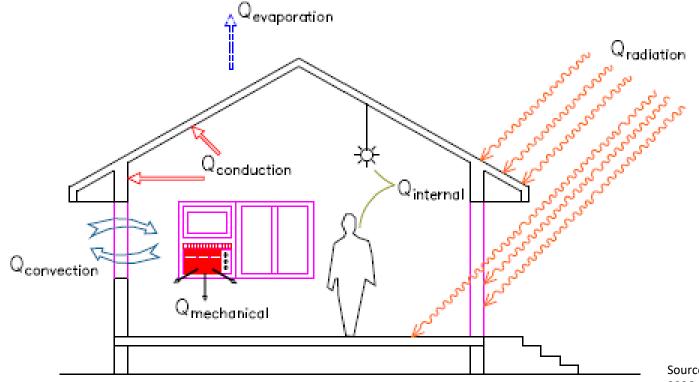

Source: "Renewable Energy Technologies" book by Prof Chetan Singh Solanki

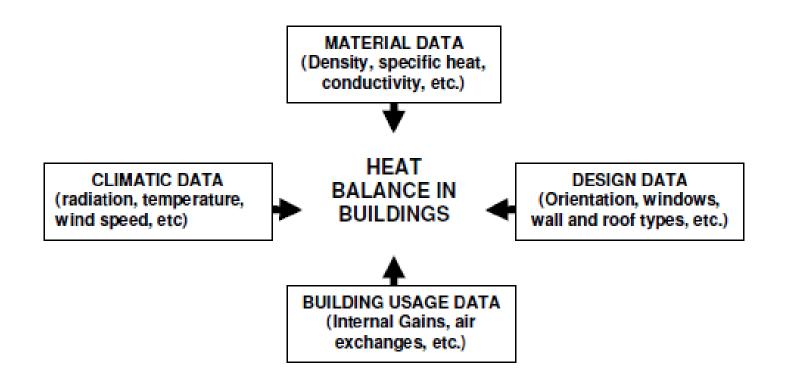
Source: https://www.researchgate.net/figure/Hourly-variation-in-global-solar-radiation-over-four-test-days_fig2_372036568


ISRO Solar Calculator

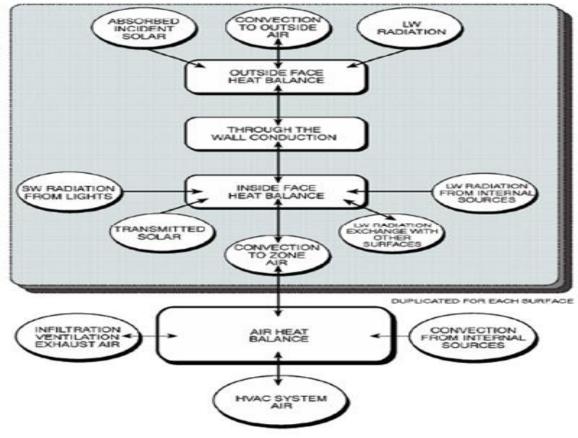
House Design: Passive Solar Architecture

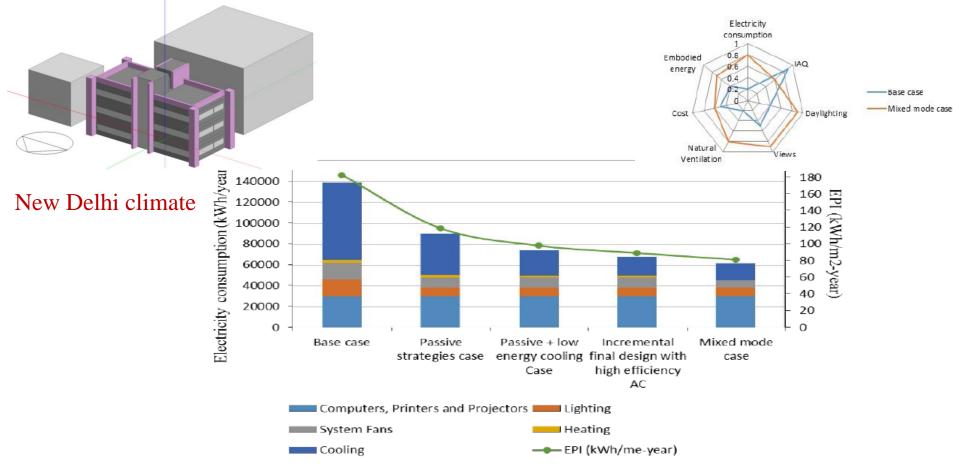



SUN PATH ANALYSIS FOR MUMBAI

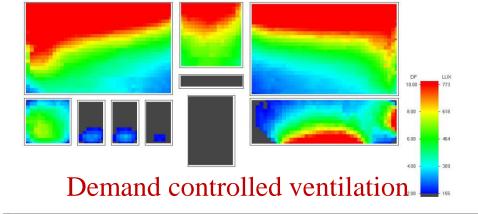

Applications of solar energy

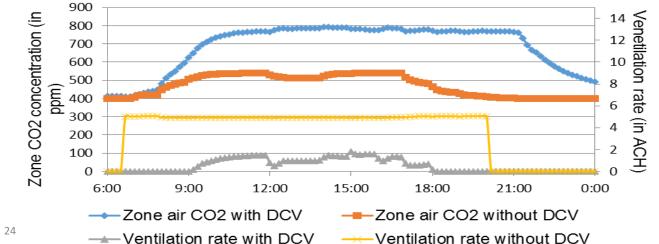
Heat gains in a building



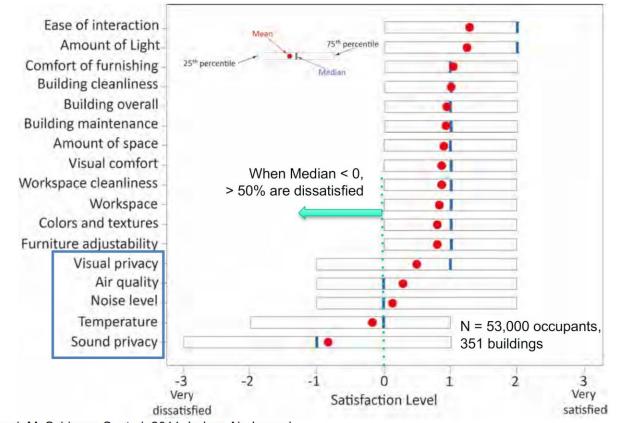

Source: Nayak, J.K., and J.A.Prajapati. 2006. <u>Handbook on Energy Conscious</u> <u>Buildings</u> IIT Bombay

Building Energy Simulation


Heat balance processes in a zone (ASHRAE 2009)



Dhariwal J., 'Design and simulation of a mixed-mode office building', *BS2015, 14th International Conference of International Building PerformanceSimulation Association (IBPSA),* Dec 2015. Winner of the student modelling competition for this entry.


Daylighting simulation

CBE occupant satisfaction survey, office buildings -> 50% are dissatisfied with temperature

Frontczak M, Schiavon S, et al. 2011. Indoor Air Journal

Lighting

Sl No.	Type of Interior or Activity	Range of Service Illuminance (See Note) lux	Quality Class of Direct Glare Limitation (See Note)
(1)	(2)	(3)	(4)
21 21.1 21.1.1 21.1.2	EDUCATION Assembly Halls General Platform and stage	200-300-500	3
21.2	Teaching Spaces General	200-300-500	1
21.3 21.3.1 21.3.2	Lecture Theatres General Demonstration benches	200-300-500 300-500-750	1
21.4 21.5	Seminar Rooms Art Rooms	300-500-750 300-500-750	1
21.6 21.7 21.8	Needlework Rooms Laboratories Libraries	300-500-750 300-500-750 200-300-500	1 1 1
21.9 21.10 21.11	Music Rooms Sports Halls Workshops	200-300-500 200-300-500 200-300-500	1 1 1

Table 4 Recommended Values of Illuminance

Source: Page 97 NBC 2016 Volume 2

Light and health

What Color Light Is Best For Sleep?

Hues of **red**, **orange**, **and yellow** are better for preparing the mind and body for sleep.

Sunset

Overcast

Blue sky

Candlelight

Warm light similar to a setting sun may help to signal that it is time for sleep. Exposure to bright lights and cool-toned colors, such as **blue light** from screens, can inhibit melatonin production and keep a person awake.

https://www.sleepfoundation.org/bedroom-environment/light-and-sleep

٠

What is light pollution?.

Daily light and dark cycles create a natural rhythm that is important for many organisms. Some species are only active at night, some migrate by night, most set their internal clocks to the changing length of days and seasons.

Sources of pollution

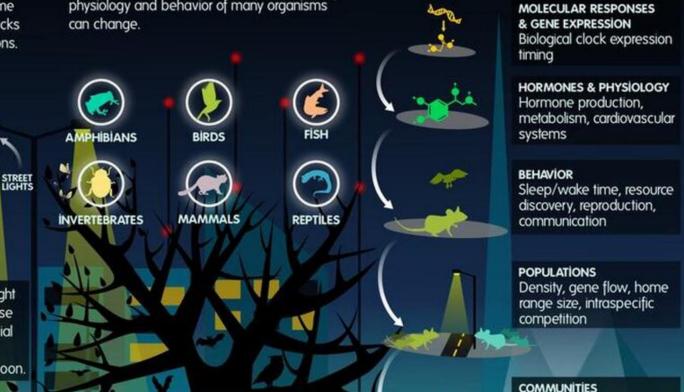
Light pollution disrupts these natural cycles. Artificial light at night comes from human sources such as transportation (cars & planes), electric lighting in buildings, houses, and signs.

DISPLAYS & ADVERTISEMENTS

Sky glow is when the night sky is brightened by diffuse light. Sky glow from artificial light in cities outshines natural sources like the moon.

Not all artificial light is the same.

Effects across the tree of life


Not only nocturnal animals are affected. By perceiving light pollution as daylight, the physiology and behavior of many organisms ° can change.

Biological consequences

Light pollution influences many levels. For example, it alters:

Predator-prey interactions,

food web processes

https://www.darkskydefenders.org/light-pollution-effects.html

Sound levels


Table 4 Acceptable Indoor Noise Levels for
Various Buildings

(*Clause* 4.1)

Sl No.	Location	Noise Level dBA
(1)	(2)	(3)
i)	Auditoria and concert halls	20-25
ii)	Radio and TV studios	20-25
iii)	Cinemas	25-30
iv)	Music rooms	25-30
v)	Hospitals	35-40
vi)	Apartments, hotels and homes	35-40
vii)	Conference rooms, small offices and libraries	35-40
viii)	Court rooms and class rooms	40-45
ix)	Large public offices, banks and stores	45-50
x)	Restaurants	50-55

Source: Part 8, Section 4, Page 402, NBC 2016 Volume 2

Noise pollution sources and health effects

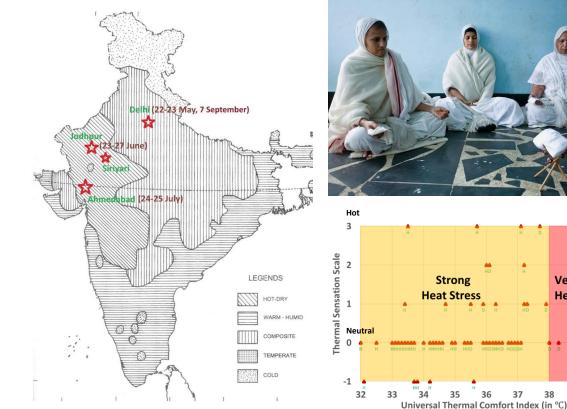
https://visual.ly/community/Infographics/health/effects-noise-health-and-hearing

Thermal Comfort

a) For naturally ventilated (NV) buildings:


The following equation should be used for design and operation of naturally ventilated (NV) buildings. It indicates that occupants in NV buildings thermally adapt to the outdoor temperature of their location. It is based on the 30 day outdoor running mean temperature (in $^{\circ}$ C).

Indoor operative temperature = $(0.54 \times \text{outdoor} \text{temperature}) + 12.83$


Where, indoor operative temperature (in $^{\circ}$ C) is neutral temperature, and outdoor temperature is the 30 day outdoor running mean air temperature (in $^{\circ}$ C).

Source: Section 3 HVAC, Page 330 of NBC 2016 Volume 2

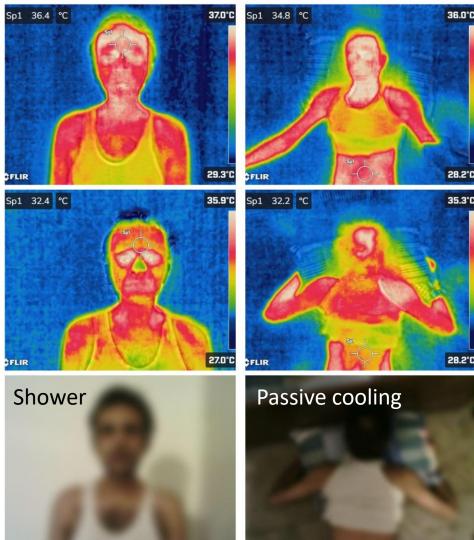
Heat stress assessment & mitigation

Land Surface Temperature (LST) Distribution Delhi 2000, 2010, and 2020.

Very Strong Heat Stress Heat Stress b b

39

40


Research gaps: Human limits of thermal comfort, Behavioural adaptation of normal householders to reduce energy consumption, adaptation of IIT hostellers

> Communities living a low carbon lifestyle

Areas: Design for Sustainability, Behavioural Design, Environmental **Ergonomics**

Collaboration with Prof Pramod Khadilkar, Dept. of Design, IIT Delhi

Dhariwal, J. & Gangrade, S. (2023). Learnings from the extreme thermal comfort adaptation of Jain ascetics during the summer and the monsoon months in India. Accepted for publication at CATE2023, 13 - 15 December 2023 | CEPT University, Ahmedabad, India.

Thermal imaging for identifying target behaviours for low energy cooling

Ventilation

Sl No.		Air Change per Hour
(1)	(2)	(3)
18.	Dairies	8-12
19.	Dance halls	12, Min
20.	Dye works	20-30
21.	Electroplating shops	10-12
22.	Engine rooms/DG	see Note 2
	Rooms/GG Rooms	
23.	Entrance halls	3-5
24.	Factories and work shop	s 8-10
25.	Foundries	15-30
26.	Garages	6-8
27.	Glass houses	25-60
28.	Gymnasium	6, <i>Min</i>
29.	Hair dressing saloon	10-15
30.	Hospitals sterilising	15-25
31.	Hospital wards	6-8
32.	Hospital domestic	15-20
33.	Laboratories	6-15
34.	Launderettes	10-15
35.	Laundries	10-30
36.	Lavatories	6-15
37.	Lecture theatres	5-8
38.	Libraries	3-5

Source: Part 8 Building Services, Section 1, Page 118 of National Building Code Volume 2

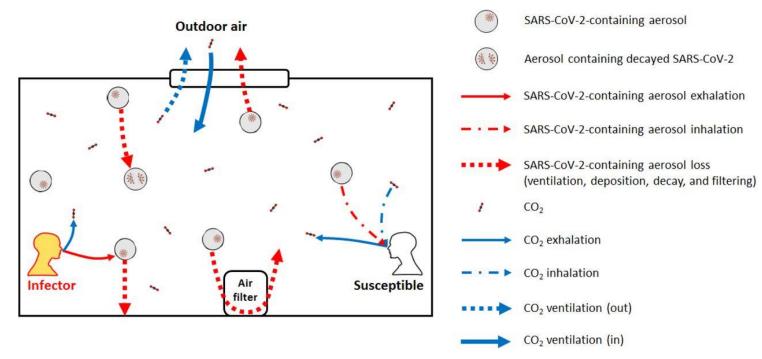
Table 3 Minimum Ventilation Rates in Breathing Zone (See Notes 1 to 5)[Clause 6.2(c)(3)]

(This table is not valid in isolation; it shall be used in conjunction with the accompanying notes.)

SI No. Occupancy Category		People Outdoor Air Rate, R _p		Area Outdoor Air Rate, <i>R</i> a		Notes	Default Values			Air ¹⁾ Class
				$c fm/ ft^2 l/s.m^2$		-	Occupant Density (see Note 4)	Combined Outdoor Air Rate (<i>see</i> Note 4)		Class
		person	person		1/ 5.111		Persons per 1 000 ft ² or per 100 m ²	cfm/person	l/s.person	
	(1) (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	 i) Correctional facilities: a) Cell b) Dayroom c) Guard Stations d) Booking/waiting ii) Educational facilities: a) Daycare (through age 4) 	5 5 5 7.5	2.5 2.5 2.5 3.8 5	0.12 0.06 0.06 0.06 0.18	0.6 0.3 0.3 0.3 0.9		25 30 15 50 25	10 7 9 9	4.9 3.5 4.5 4.4 8.6	2 1 1 2 2
	 b) Daycare sickroom c) Classrooms (ages 5-8) d) Classrooms (age 9 plus) e) Lecture classroom f) Lecture hall (fixed seats) 	10 10 10 7.5 7.5	5 5 5 3.8 3.8	0.18 0.12 0.12 0.06 0.06	0.9 0.6 0.6 0.3 0.3		25 25 35 65 150	17 15 13 8 8	8.6 7.4 6.7 4.3 4.0	3 1 1 1 1

Source: Section 3 HVAC, Page 333 of NBC 2016 Volume 2

Need for adequate ventilation (high CO₂ levels)

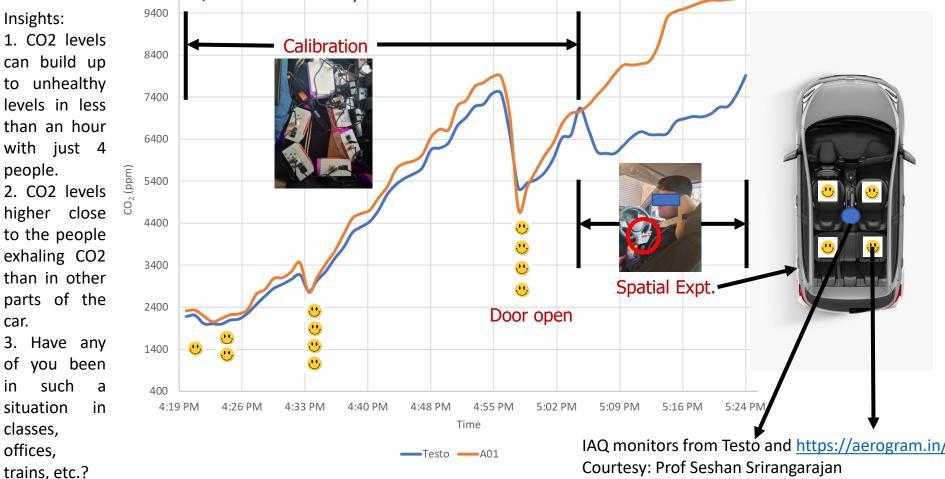

Table 1 | Overview of potential health effects

	CO ₂ concentration (ppm)	Duration	Selected key references			
Adverse health outcomes associated with acute CO ₂ exposure						
CO ₂ retention	1,000-5,000	<4 h	Zhang et al. ⁷⁵ ; Zhang et al. ⁷³ ; Vehvilainen et al. ⁷⁷ ; Shiraram et al. ⁷⁶			
Inflammation	2,000-4,000	2 h	Thom et al. ^{80,81} ; Schneberger et al. ⁸²			
Cognitive effects	1,000-2,700	1–6 h	Kajtar and Herczeg ⁸⁵ ; Satish et al. ⁸⁶ ; Allen et al. ⁸²⁸⁸ ; Zhang et al. ⁷⁵ ; Zhang et al. ^{73,74} ; Rodeheffer et al. ⁹¹ ; Snow et al. ⁹⁰			
Adverse health outcomes associated with chronic CO ₂ exposure						
Chronic, low-grade systemic inflammation	~3,000	13 d	Zappulla ^{2,69} ; Beheshti et al. ¹⁰¹			
Bone demineralization and kidney calcification	~2,000-3,000	60-90 d	Schaefer et al. ^{102,103}			
Chronic, low-grade (sub-clinical) respiratory acidosis	Unknown	Decades	Carnauba et al. ¹⁰⁹ , Robertson ^{61,06}			
Behavioural changes and physiological stress	700-3,000	13-15 d	Beheshti et al. ¹⁰¹ ; Wade et al. ¹⁰⁴ ; Martrette et al. ¹¹¹ ; Kiray et al. ¹¹²			
Hedonic feeding behaviours	Unknown	Ecological	Hersoug et al. ¹¹³ ; Zheutlin et al. ¹			
Oxidative stress and endothelial dysfunction	3,000-5,000	13 d to 6 months	Beheshti et al. ¹⁰¹ ; Thom et al. ^{80,81} ; Zwart et al. ¹¹⁹			

Exposure levels, including magnitude and duration, for which health effects may manifest. The selected key references are most relevant to the health end-point.

Jacobson, Tyler A, Jasdeep S Kler, Michael T Hernke, Rudolf K Braun, Keith C Meyer, and William E Funk. 2019. "Direct Human Health Risks of Increased Atmospheric Carbon Dioxide." *Nature Sustainability* 2 (8): 691–701. https://doi.org/10.1038/s41893-019-0323-1.

CO₂ levels as a proxy for Covid-19 transmission


Peng, Zhe, and Jose L. Jimenez. 2021. "Exhaled CO2as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities." *Environmental Science and Technology Letters* 8 (5): 392–97. https://doi.org/10.1021/acs.estlett.1c00183.

Impacts of Sick Building Syndrome on well-being

Author(s)	Country	Type of building	Identified symptoms associated with SBS
Magnavita (2015)	Italy	Companies	Anxiety, depression, environmental discomfort and job strain
Jafari et al. (2015)	Iran	Office buildings	Malaise, headache, throat dryness, cough, sputum, wheezing, skin dryness and eye pain
Zhang et al. (2014)	China	Schools	Skin symptoms, mucosal symptoms
Shan et al. (2016)	Singapore	Schools	Head and eye related issues
Norbäck et al. (2016a)	Malaysia	Schools	Ocular, rhinitis, throat symptoms, headache and tiredness, dermal symptoms
Lim et al. (2015)	Malaysia	University	Dermal, mucosal and general symptoms
Amin, Akasah, and Razzaly (2015)	Malaysia	University	Dry skin, runny nose, dry eyes, blocked/stuffy nose, tiredness and flu-like symptoms
Sun et al. (2013)	China	Dormitory	General symptoms of sick building, mucosal or skin problems and nose irritation
Sahlberg et al. (2013)	Sweden/Estonia/ Iceland	Residential Building	General signs of sick building (i.e. mucosal symptoms)
Takigawa et al. (2010)	Japan	Residential Building	Optical, nasal, and gular symptoms
Tsai, Lin, and Chan (2012)	Taiwan	Office building	Eye irritation and upper respiratory symptoms
Lukcso et al. (2016)	U.S.A.	Office building	Ásthma and allergic disease
Gomzi et al. (2007)	Croatia	Office buildings	Fatigue, sore and dry eyes, and headache
Runeson-Broberg and Norbäck (2013)	Sweden	Office buildings	Headache, tiredness, nausea, and sensation of a cold

Ghaffarianhoseini, Amirhosein, Husam AlWaer, Hossein Omrany, Ali Ghaffarianhoseini, Chaham Alalouch, Derek Clements-Croome and John Tookey. 2018. "Sick Building Syndrome: Are We Doing Enough?" *Architectural Science Review* 61 (3): 99–121. https://doi.org/10.1080/00038628.2018.1461060.

Experiment 1: understanding CO₂ build up with occupancy in a closed car Date: 17th December, Location: Jodhpur


Experiment 2: CO₂ levels in a bedroom (no heater) Date: 25th December, Location: New Delhi

Insights:

1. Outside room CO₂ levels were around 800 ppm

2. Indoor room CO_2 levels reached 3500+ for two occupants. It's a fact as pointed out by the Nature paper. 3. CO_2 levels inside the blanket spiked to 10000+ ppm also. Its better to keep the face outside the blanket as we spend $1/3^{rd}$ of our life sleeping How many of you would want to put your face into the blanket as it is cold?

4. Door opening led to mixing of CO₂ levels for inside and outside of room.

10' 4"

Drawing Room

Kitchen

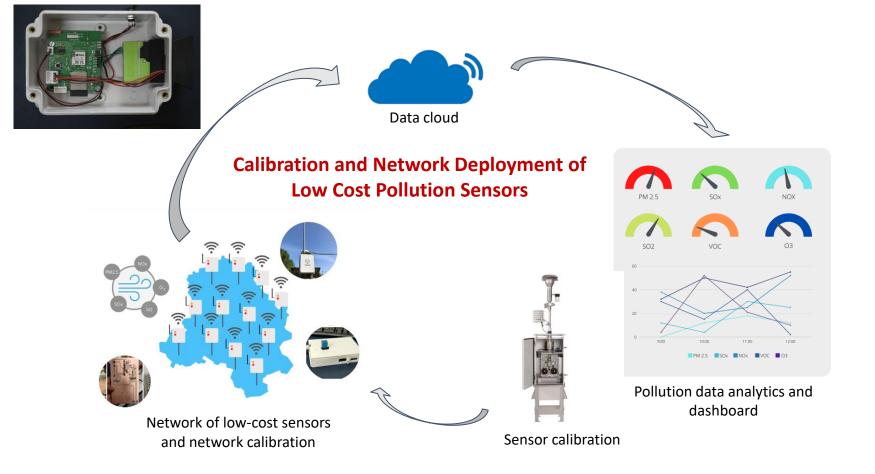
11' 10"

Bathroon

Bedroom

13' 1"

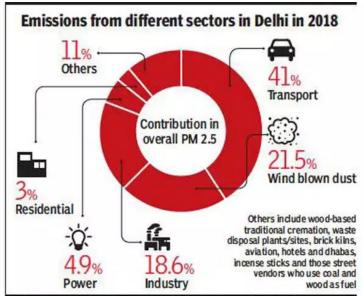
7' 4"



Experiment 2: CO₂ levels vs. thermal comfort in a bedroom (no heater) Date: 25th December, Location: New Delhi

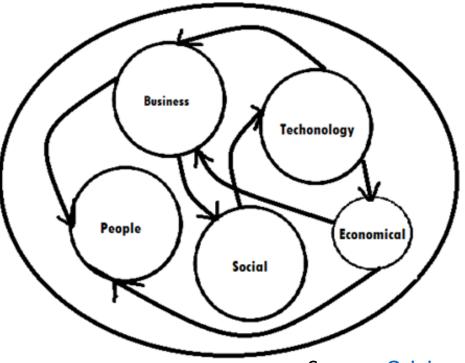
Insights:

- 1. Outside and inside room UTCI was around 16 C
- 2. Inside blanket UTCI reached even 34 C
- With no heater, it is better if the door can be kept open to have low CO₂ levels.



Pls: Prof. Seshan Srirangarajan & Prof. Jay Dhariwal, IIT Delhi

Air pollution mitigation


- Electric Vehicles
- Crop residue as insulation, eco-friendly plates, packaging
- Air purifiers
- Renewables

Source: SAFAR-high resolution emission inventory of mega city Delhi- 2018 of IITM, Pune

Source: Delhi air pollution: Smaller sources add up to 11% of PM2.5 emission | Delhi News - Times of India (indiatimes.com)

Systems Thinking

- What happens if we don't use systems thinking?
- Was the invention of electricity, cars, plastics good from systems thinking point of view?

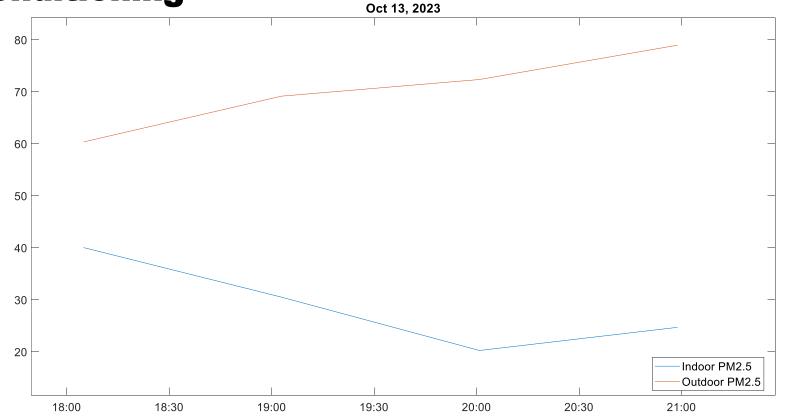
Source: Origin of System Dynamics - System Dynamics Society

Design for Health and Wellness in a Delhi Classroom

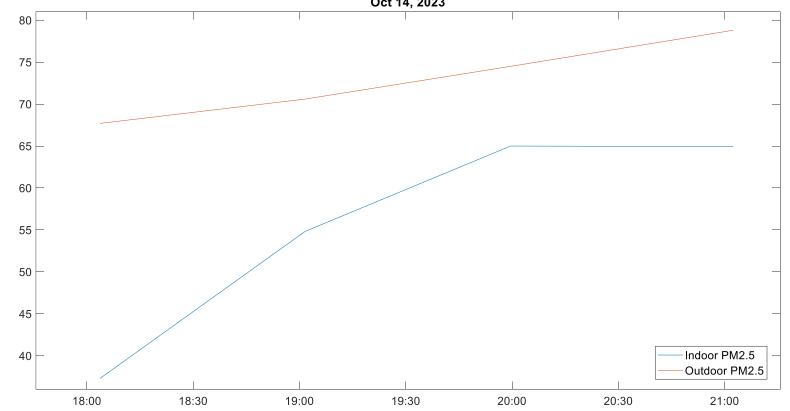
1 1 1 000 Too hot Too cold PM2.5 Too wet IAQ Too dry

Maximize Health and Wellness for Class Occupants:

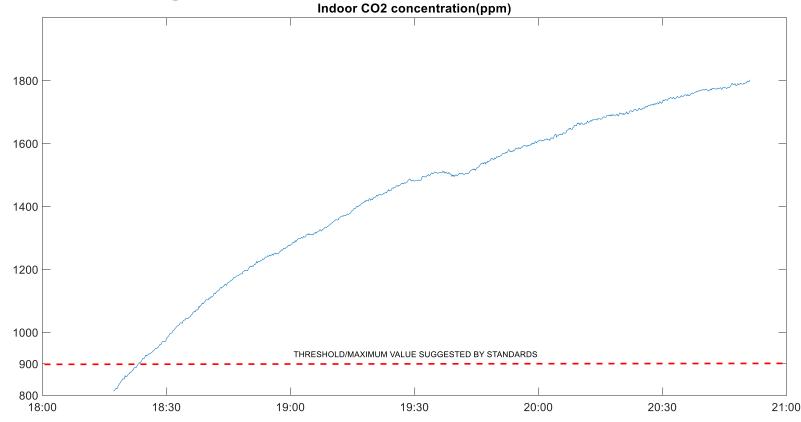
- 1) Keep Thermal Comfort: < 32° C
- 2) Keep Air Quality: $CO_2 < 1000$ ppm, PM2.5 < 50 µg/m3
- 3) Minimize Energy Consumption


Experiments in the class on IAQ, PM2.5, thermal comfort and energy usage

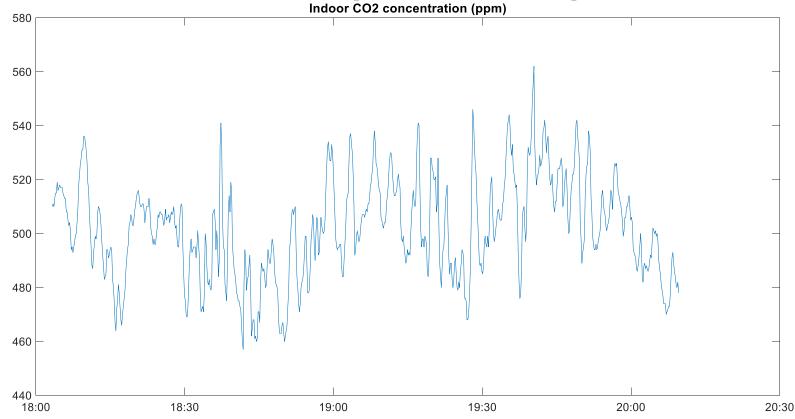
VARIATION OF PM 2.5


Variation in concentration of PM2.5 in Air Conditioning and Natural Ventilation conditions

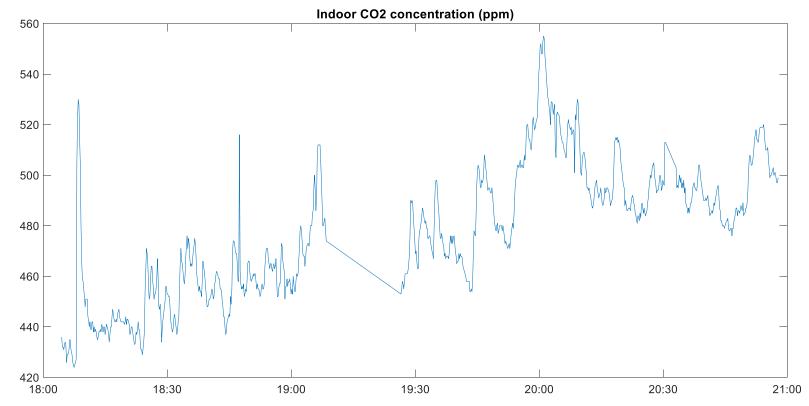
Comparison of Indoor-Outdoor PM2.5 in Air Conditioning



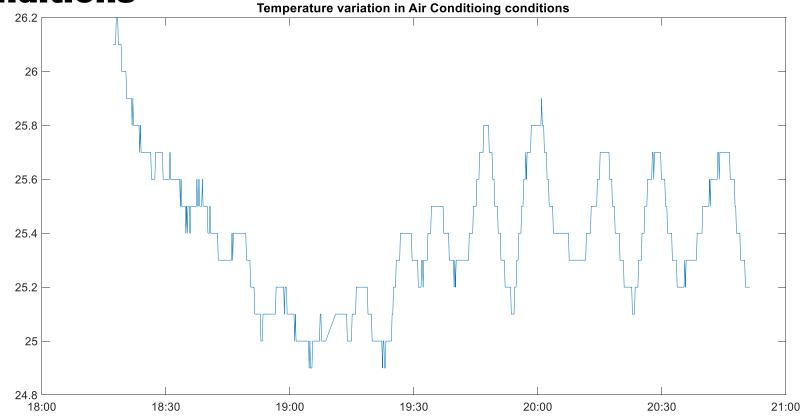
Comparison of Indoor-Outdoor PM2.5 conditions in Natural Ventilation



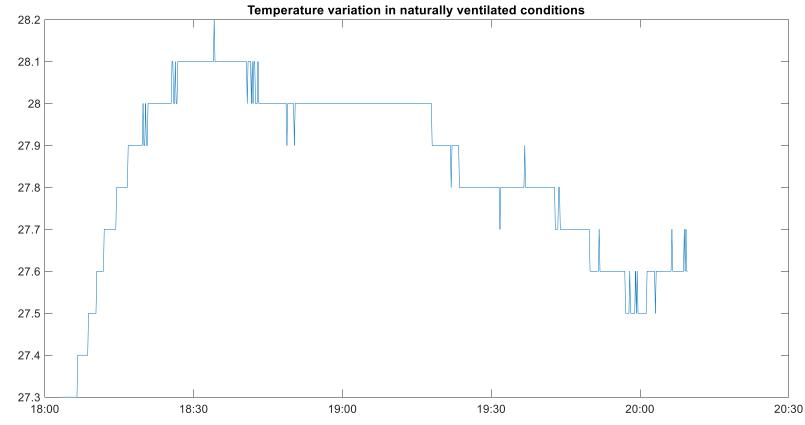
VARIATION OF CO2


Variation in concentration of CO2 in Air Conditioning conditions

Variation in concentration of CO2 in Natural Ventilation conditions (Oct 13,2023) FANS ON



Variation in concentration of CO2 in Natural Ventilation conditions (Oct 20,2023) FANS OFF



VARIATION OF TEMPERATURE

Temperature variation in Air Conditioning conditions

Temperature variation in Natural Ventilation conditions

Lessons from experiments

Date	Status	Indoor PM2.5 (µg/m³)	Outdoor PM2.5 (µg/m ³)	CO ₂ (ppm)	Air temperature (°C)
October 13	AC and fans ON, Windows closed	30	80	1800	25
October 14	AC and fans OFF, Windows open	70	80	500	28

There is a trade-off between keeping CO_2 low or PM2.5 low.

Design for Health and Wellness in a Delhi Classroom

1 1 1 000 Too hot Too cold PM2.5 Too wet IAQ Too dry

Maximize Health and Wellness for Class Occupants:

- 1) Keep Thermal Comfort: < 32° C
- 2) Keep Air Quality: $CO_2 < 1000$ ppm, PM2.5 < 50 µg/m3
- 3) Minimize Energy Consumption

Thank you!

